Login     Register

        Contact Us     Search

XLeratorDB/statistics Documentation

SQL Server BETA.DIST function


BETA_DIST

Updated: 31 July 2015

Use BETA_DIST to calculate the probability density function or cumulative distribution function of a beta distribution for x with shape parameters a and ß.
Syntax
SELECT [wct].[BETA_DIST](
  <@X, float,>
 ,<@Alpha, float,>
 ,<@Beta, float,>
 ,<@Cumulative, bit,>
 ,<@A, float,>
 ,<@B, float,>)
 
Arguments
@X
The value of interest. @X must be of a type float or of type that intrinsically converts to float
@Alpha
The first shape parameter for the distribution. @Alpha must be of a type float or of a type that intrinsically converts to float.
@Beta
The second shape parameter for the distribution. @Beta must be of a type float or of a type that intrinsically converts to float.
@Cumulative
A bit value indicating whether the probability density function ('False') or the cumulative distribution function ('True') should be returned.
@A
The lower bound of the interval for @X. @A must be of a type float or of a type that intrinsically converts to float.
@B
The upper bound of the interval for @X. @B must be of a type float or of a type that intrinsically converts to float.
Return Type
float
Remarks
·         @A = @X = @B
·         @Alpha > 0
·         @Beta > 0
·         If @A = @B Then NULL is returned
·         If @A is NULL then @A = 0
·         If @B is NULL then @B = 1
Examples
In this example we calculate the beta cumulative distribution function for x = 2, alpha = 8, beta = 10, with location parameters 8, 10.
SELECT
       wct.BETA_DIST(
               2            --@X
              ,8            --@Alpha
              ,10           --@Beta
              ,'True'       --@Cumulative
              ,1            --@A
              ,3            --@B
              ) as CDF

This produces the following result


Using the same data we calculate the beta probability density function.
SELECT
       wct.BETA_DIST(
               2            --@X
              ,8            --@Alpha
              ,10           --@Beta
              ,'False'      --@Cumulative
              ,1            --@A
              ,3            --@B
              ) as PDF

This produces the following result.


This example demonstrates the recurrence relationship 26.5.10 from Abramowitz & Stegun.
DECLARE @x as float = 0.75
DECLARE @Alpha as float = 4
DECLARE @Beta as float = 10
SELECT
        wct.BETA_DIST(@x,@alpha,@beta,1,NULL,NULL) as cdf
       ,@x*wct.BETA_DIST(@x,@alpha-1,@beta,1,NULL,NULL)+(1-@x)*wct.BETA_DIST(@x,@alpha,@beta-1,1,NULL,NULL) as cdf2

This produces the following result.


In this example we compare the results returned by the function to the results returned by integration.
DECLARE @x as float = 0.75
DECLARE @Alpha as float = 4
DECLARE @Beta as float = 10
SELECT
        wct.BETA_DIST(@x,@alpha,@beta,1,NULL,NULL) as cdf
       ,wct.QUADTS('SELECT POWER(@x,' + Cast(@alpha-1 as varchar(max)) + ')*POWER(1-@x,' + cast(@beta-1 as varchar(max)) + ')','@x',0,@x)/wct.BETA(@alpha,@beta) as [Integral]

This produces the following result.

 

See Also
·         BETA - Beta function

 



Copyright 2008-2025 Westclintech LLC         Privacy Policy        Terms of Service