Login     Register

        Contact Us     Search

XLeratorDB/math Documentation

SQL Server random binomial distribution


RANDBINOM

Updated: 31 March 2014


Use the table-valued function RANDBINOM to generate a sequence of random integers from the binomial distribution for a given probability of success @p and a given number of trials @Trials.
Syntax
SELECT * FROM [wctMath].[wct].[RANDBINOM](
  <@Rows, int,>
 ,<@p, float,>
 ,<@Trials, int,>)
Arguments
@Rows
the number of rows to generate. @MaxIterations must be of the type int or of a type that implicitly converts to int.
@p
the success probability in each trial. @p must be of the type float or of a type that implicitly converts to float.
@Trials
the number of trials. @Trials must be of the type int or of a type that implicitly converts to int.
Return Types
RETURNS TABLE (
      [Seq] [int] NULL,
      [X] [int] NULL
)
Remarks
·         @p must be greater than or equal to zero and less than or equal to 1 (0 <= @p <= 1).
·         @Trials must be greater than zero.
·         If @p is NULL then @p is set to 0.
·         If @Trials is NULL then @Trials is set to 1.
·         If @Rows is less than 1 then no rows are returned.
Examples
In this example we create a sequence 1,000,000 random numbers from a binomial distribution with @p = 0.3 and @Trials = 500, COUNT the results, paste then into Excel and graph them.
SELECT
   X,
   COUNT(*) as [COUNT]
FROM (
   SELECT
      X
   FROM wct.RANDBINOM(
    1000000   --@Rows
    0.3,      --@p
    500       --@Trials
    )     
   )n
GROUP BY
   X
ORDER BY
   1

This produces the following result.



In this example we generate 1,000,000 random numbers from a binomial distribution with probability of .70 and number of trials = 140. We calculate the mean, standard deviation, skewness, and excess kurtosis from the resultant table and compare those values to the expected values for the distribution.
DECLARE @size as int = 1000000
DECLARE @p as float = 0.70
DECLARE @trials as float = 140
DECLARE @mean as float = @p*@trials
DECLARE @var as float = @mean*(1e+00-@p)
DECLARE @stdev as float = SQRT(@var)
DECLARE @skew as float =(1 - 2*@p)/@stdev
DECLARE @kurt as float =(1-6*@p*(1e+00-@p))/@var
 
SELECT
   stat,
   [RANDBINOM],
   [EXPECTED]
FROM (
   SELECT
      x.*
   FROM (
      SELECT
         AVG(cast(x as float)) as mean_BINOM,
         STDEVP(x) as stdev_BINOM,
         wct.SKEWNESS_P(x) as skew_BINOM,
         wct.KURTOSIS_P(x) as kurt_BINOM
      FROM
         wct.RANDBINOM(@size,@p,@trials)
      )n
   CROSS APPLY(
      VALUES
         ('RANDBINOM','avg', mean_BINOM),
         ('RANDBINOM','stdev', stdev_BINOM),
         ('RANDBINOM','skew', skew_BINOM),
         ('RANDBINOM','kurt', kurt_BINOM),
         ('EXPECTED','avg',@mean),
         ('EXPECTED','stdev',@stdev),
         ('EXPECTED','skew',@skew),
         ('EXPECTED','kurt',@kurt)
      )x(fn_name,stat,val_stat)    
   )d
PIVOT(sum(val_stat) FOR fn_name in([RANDBINOM],[EXPECTED])) P

This produces the following result (your result will be different).

stat
RANDBINOM
EXPECTED
avg
97.984171
98
kurt
-0.009637029
-0.008843537
skew
-0.072603649
-0.073771111
stdev
5.421933091
5.422176685

 

See Also

 



Copyright 2008-2025 Westclintech LLC         Privacy Policy        Terms of Service