Login     Register

        Contact Us     Search

XLeratorDB/math Documentation

SQL Server random poisson distribution


RANDPOISSON

Updated: 31 March 2014


Use the table-valued function RANDPOISSON to generate a sequence of random integers from the Poisson distribution for a given @lambda.
Syntax
SELECT * FROM [wctMath].[wct].[RANDPOISSON](
  <@Rows, int,>
 ,<@lambda, float,>)
Arguments
@Rows
the number of rows to generate. @Rows must be of the type int or of a type that implicitly converts to int.
@lamda
the lambda parameter to the distribution. @lambda must be of the type float or of a type that implicitly converts to float.
Return Types
RETURNS TABLE (
      [Seq] [int] NULL,
      [X] [int] NULL
)
Remarks
·         @lambda must be greater than zero.
·          If @lambda is NULL then @lambda is set to 1.
·         If @Rows is less than 1 then no rows are returned.
Examples
In this example we create a sequence 1,000,000 random numbers from a Poisson distribution with @lambda = 10, COUNT the results, paste them into Excel and graph them.
SELECT
   X,
   COUNT(*) as [COUNT]
FROM (
   SELECT
      X
   FROM wct.RANDPOISSON(
      1000000,    --@Rows
      10          --@lambda
      )
   )n
GROUP BY
   X
ORDER BY
   1
This produces the following result.


In this example we generate 1,000,000 random numbers from a Poisson distribution with @lambda of 4. We calculate the mean, standard deviation, skewness, and excess kurtosis from the resultant table and compare those values to the expected values for the distribution.
DECLARE @size as int = 1000000
DECLARE @lambda as float = 4
DECLARE @mean as float = @lambda
DECLARE @var as float = @lambda
DECLARE @stdev as float = SQRT(@lambda)
DECLARE @skew as float = 1/@stdev
DECLARE @kurt as float = 1/@mean
 
SELECT
   stat,
   [RANDPOISSON],
   [EXPECTED]
FROM (
   SELECT
      x.*
   FROM (
      SELECT
         AVG(cast(x as float)) as mean_POISSON,
         STDEVP(x) as stdev_POISSON,
         wct.SKEWNESS_P(x) as skew_POISSON,
         wct.KURTOSIS_P(x) as kurt_POISSON
      FROM
         wct.RANDPOISSON(@size,@lambda)
      )n
   CROSS APPLY(
      VALUES
         ('RANDPOISSON','avg', mean_POISSON),
         ('RANDPOISSON','stdev', stdev_POISSON),
         ('RANDPOISSON','skew', skew_POISSON),
         ('RANDPOISSON','kurt', kurt_POISSON),
         ('EXPECTED','avg',@mean),
         ('EXPECTED','stdev',@stdev),
         ('EXPECTED','skew',@skew),
         ('EXPECTED','kurt',@kurt)
      )x(fn_name,stat,val_stat)    
   )d
PIVOT(sum(val_stat) FOR fn_name in([RANDPOISSON],[EXPECTED])) P

This produces the following result (your result will be different).

stat
RANDPOISSON
EXPECTED
avg
3.997972
4
kurt
0.241558748
0.25
skew
0.499471478
0.5
stdev
1.999604933
2

 

See Also

 



Copyright 2008-2025 Westclintech LLC         Privacy Policy        Terms of Service