XNPV

Updated: 31 Mar 2016
Use XNPV to calculate the net present value of a series of irregular cash flows-cash flows of varying amounts occurring on various dates. All cash flows in a group are discounted to the earliest cash flow in the group using the same rate.

Syntax

```
Public Shared Function XNPV(
    ByVal Disc_rate As Double,
    ByVal CF_Amt() As Double,
    ByVal CF_Date() As Date,)
```


Arguments

Disc_rate
the rate to be used for discounting the cash flows in calculating the net present value. Disc_rate is an expression that returns a Double, or of a type that can be implicitly converted to Double.

CF_Amt
the cash flow amounts. CF_Amt is an expression that returns an Array of Double, or of a type that can be implicitly converted to an Array of Double.

CF_Date
the date on which the cash flow occurred. CF_Date is an expression that returns an Array of Date, or of a type that can be implicitly converted to an Array Date.

Return Type

Double

Remarks

- The XNPV function requires pairing a series of cash flows (CF_Amt) and the dates on which those cash flows occurred (CF_Date); the order of the cash flows is not important.
- There can be multiple cash flows with the same date.
- If the discount rate (Rate) is equal to -1 , a NULL will be returned.
- Rate is the annual rate
- Funds that are paid should be represented with negative numbers. Funds that are received should be represented as positive numbers.

See Also

- EFV - Enhanced future value
- ENPV - Enhanced net present value
- EPV - Enhanced present value
- NFV - Net future value
- NPV - Net present value
- XDCF - Discounted cash flows value of a series of irregular cash flows
- XFV - Future value of a cash flow between two dates
- XNFV - Net future value for non-periodic cash flows
- XNPV30360 - Net present value for irregular cash flows using a 30/360 day-count convention
- XNPVT - Net present value for cash flows with irregular time periods
- XPV - Discounted value of a cash flow between two dates

