UNEQUALLOANPAYMENTS

Updated: 31 Mar 2016

Use UNEQUALLOANPAYMENTS to generate a payment schedule for a loan where the interest payment frequency and the principal payment frequency are different, or the loan starts with an interest only schedule with principal repayments commencing after the first interest payment date.

```
Syntax
Public Shared Function UNEQUALLOANPAYMENTS(
    ByVal PV As Double,
    ByVal Rate As Double,
    ByVal LoanDate As Date,
    ByVal InterestFrequency As Integer,
    ByVal FirstPaymentDate As Date,
    ByVal DaysInYr As Integer,
    ByVal PrinPaymentMultiple As Integer,
    ByVal FirstPrinPayNo As Integer,
    ByVal NumberOfPayments As Integer,
    ByVal LastPaymentNumber As Integer,
    ByVal FV As Double,
    ByVal IsRegPay As Boolean,)
```


Arguments

the principal amount of the loan or lease. $P V$ is an expression that returns a Double, or of a type that can be implicitly converted to Double.

Rate
the annual interest rate for the loan. Rate is an expression that returns a Double, or of a type that can be implicitly converted to Double.

LoanDate

the date that the loan starts accruing interest. LoanDate is an expression that returns a Date, or of a type that can be implicitly converted to Date.

InterestFrequency

the number if times that interest is paid in a year. InterestFrequency is an expression that returns a Integer, or of a type that can be implicitly converted to \{paramtype\}.

FirstPaymentDate

the date that the first payment is due. FirstPaymentDate is an expression that returns a Date, or of a type that can be implicitly converted to \{paramtype\}.

DaysInYr
the denominator number of days to be used in the calculation of the interest amount in the odd first period. DaysInYr is an expression that returns an Integer, or of a type that can be implicitly converted to Integer.

PrinPaymentMultiple

the ratio of the frequency of the interest payments to the frequency of the interest payments. For example, a loan with monthly payments of interest and quarterly payments of principal would have a PrinPaymentMultiple of 3. PrinPaymentMultiple is an expression that returns an Integer, or of a type that can be implicitly converted to Integer.

FirstPrinPayNo

the payment number of the first principal payment. FirstPrinPayNo is an expression that returns an Integer, or of a type that can be implicitly converted to Integer.

NumberOfPayments

the total number of payments to be used in the calculation of the periodic payments. This may not be the actual number of payments on the loan, which can be specified by using LastPaymentNumber. NumberOfPayments is an expression that returns an Integer, or of a type that can be implicitly converted to Integer.

LastPaymentNumber

the number of the last loan payment if different than the NumberOfPayments.
LastPaymentNumber is an expression that returns an Integer, or of a type that can be implicitly converted to Integer.

FV
the future value at the end of the loan. FV is an expression that returns a Double, or of a type that can be implicitly converted to Double.

IsRegPay
specifies whether the first interest period is longer or shorter than the regular payment. If IsRegularPay is False then the interest payment amount for the first period is calculated using the number of days in the period and the DaysInYr value. IsRegPay is an expression that returns a Boolean, or of a type that can be implicitly converted to Boolean.

Return Type
FinancialTypes.UNEQUALLOANPAYMENTS_table

```
Class UNEQUALLOANPAYMENTS_table
        Inherits Data.DataTable
        Property Item(RowIndex As Integer) As FinancialTypes.OutputRow_UNEQUALLOANPAYMENTS
Class OutputRow_UNEQUALLOANPAYMENTS
    Public num_pmt As Integer
    Public date_pmt As Date
    Public amt_prin_init As Double
    Public amt_pmt As Double
```

Public amt_int_pay As Double
Public amt_prin_pay As Double
Public amt_prin_end As Double
End Class

Column	Description
num_pmt	The payment number calcaulated chronologically from FirstPaymentDate.
date_pmt	The date of the payment.
amt_prin_init	The principal amount at the beginning of the period. When num_pmt is equal to 0, the principal amount is the amount of the loan, otherwise the principal amount is the ending principal amount where num_pmt = num_pmt - 1.
amt_pmt	The calculated payment amount
amt_int_pay	The interest portion of amt_pmt. In num_pmt > 1 or num_pmt = 1 and IsRegularPay $=$ True, amt_int_pay $=$ Rate / InterestFrequency * amt_prin_init. If num_pmt $=1$ and $/$ /sRegularPay $=$ False then amt_int_pay is calculated using the number of days from IssueDate to FirstPaymentDate based on DaysInYr
amt_prin_pay	The principal portion on amt_pmt calculated as amt_pmt - amt_int_pay
amt_prin_end	The ending principal amount. Calculated as the beginning principal amount (amt_prin_init) less the principal payment amount for the period (amt_prin_pay).

Remarks

- If $P V$ is NULL then $P V=0$.
- If Rate is NULL then Rate $=0$.
- If LoanDate is NULL then LoanDate equals the current system date.
- If InterestFrequency is NULL then InterestFrequency $=12$.
- If DaysInYr is NULL then Days $\operatorname{InYr}=365$.
- If NumberOfPayments is NULL then NumberOfPayments $=1$
- If LastPaymentNumber is NULL then LastPaymentNumber = NumberOfPayments.
- If $F V$ is NULL then $F V=0$.
- If IsRegularPay is NULL then IsRegularPay = True .
- If FirstPaymentDate is NULL then FirstPaymentDate is calculated using LoanDate and InterestFrequency.
- InterestFrequency must be $1,2,3,4,6,12,13,24,26,52$, or 365.
- NumberOfPayments must be greater than 1 .
- Rate must be greater than zero.
- DaysinYr must be 360 or 365 .
- If NumberOfPayments is less than 1 then an error will be generated.
- If PrinPaymentMultiple is less than 1 then an error will be generated.
- If LastPaymentNumber is less than 1 then an error will be generated.
- If FirstPrinPayNo < 2 then an error will be generated.

See Also

- AMORTRATE - Constant daily effective rate for bond/loan amortization
- AMORTSCHED - Generate amortization schedule of a loan
- Balloon - Schedule with periodic interest payments and principal repaid at maturity
- Bullet - Schedule with single interest and principal payment at maturity
- ConstantCashFlow - Schedule with equal periodic cash flows
- ConstantCashFlowFR - Schedule for a loan with a fixed maturity date and annuity-style payments
- ConstantPaymentAmount -Schedule with no maturity with fixed periodic payment amount
- ConstantPrincipal - Schedule with fixed maturity date where the periodic principal payment is calculated on a straight-line basis
- ConstantPrincipalAmount - Schedule with no fixed maturity with a fixed periodic principal payment
- ConstantPrincipalRate - schedule with no fixed maturity where a fixed percentage principal payment
- CONSTPRINAMORT - Schedule of a loan with a fixed principal repayment
- NPD - Next payment date of a loan
- NPNO - Next payment number of a loan
- PAYMENTPERIODS - Number of months until first payment date, start of grace period, end of grace period, and total number payments for a loan
- PERIODRATE - Adjust the nominal rate of a loan
- PPD - Previous payment date of a loan
- PPNO - Previous payment number of a loan

