Use RPI to calculate the price or yield for a bond that pays periodic interest and has a par value of 100 . The formula for price with more than one coupon period to redemption is:

PRICE $=\left(\frac{\frac{-C}{Y}+R V}{(1+Y)^{N}}-\frac{-C}{Y}\right) *(1+Y)^{1-\frac{D S C}{E}}-A$
Where
C $=100$ * coupon rate / frequency
$\mathrm{Y}=$ yield / frequency
RV = redemption value
DSC = number of days from settlement to coupon
$\mathrm{N}=$ the number of coupons between the settlement date and the maturity date
$\mathrm{E}=$ the number of days in the current coupon period
A = C * accrued days $/ E$
When the next coupon is paid at maturity the formula for price is:
PRICE $=\frac{R V+C}{1+\left(Y * \frac{D S R}{E}\right)}-A$
Where
C $=100$ * coupon rate / frequency
$\mathrm{Y}=$ yield / frequency
RV = redemption value
DSR = number of days from settlement to redemption
$\mathrm{E}=$ the number of days in the current coupon period
A = C * accrued days $/ E$

Syntax

Public Shared Function RPI(
ByVal A As Double,
ByVal DSC As Double,
ByVal E As Double,
ByVal N As Double,
ByVal R As Double,
ByVal Y As Double,
ByVal P As Double,
ByVal F As Integer, ByVal RV As Double,)

Arguments

the accrued number of days. A is an expression that returns a Double, or of a type that can be implicitly converted to Double.

DSC
the days from settlement to the next coupon date. DSC is an expression that returns a Double, or of a type that can be implicitly converted to Double.
the number of days in the settlement period. E is an expression that returns a Double, or of a type that can be implicitly converted to Double.
the number of coupons between settlement and maturity. N is an expression that returns a Double, or of a type that can be implicitly converted to Double.
the annual coupon rate in decimal format ($10 \%=0.10$). R is an expression that returns a Double, or of a type that can be implicitly converted to Double.
the yield on the bond. Y is an expression that returns a Double, or of a type that can be implicitly converted to Double.
the price per 100 par value of the bond. P is an expression that returns a Double, or of a type that can be implicitly converted to Double.
the number of coupon payments per year. $F=1$; for semi-annual, $F=2$; for quarterly, $F=4$; for bi-monthly, $F=6$; for monthly $F=12$. For interest basis A364 you can also use 364 (every 52 weeks), 182 (every 26 weeks), 91 (every 13 weeks), or 28 (every 4 weeks). F is an expression that returns a Integer, or of a type that can be implicitly converted to Integer.

RV
the redemption value of the bond. $R V$ is an expression that returns a Double, or of a type that can be implicitly converted to Double.

Return Type

Double

Remarks

- If A is NULL then $\mathrm{A}=0$.
- If E is NULL then $\mathrm{E}=180$.
- If DSC is NULL then DSC $=\mathrm{E}-\mathrm{A}$.
- If N is NULL then $\mathrm{N}=2$.
- If R is NULL then $R=0$.
- If F is NULL then $\mathrm{F}=2$.
- If $R V$ is NULL then $R V=100$.
- If Y is NULL and P is NULL then NULL is returned.
- If $\mathrm{E}=0$ then NULL is returned.
- If $\mathrm{F}=0$ then NULL is returned.
- $C=100$ * R / F
- If Y is not NULL then the function calculates the price from the inputs otherwise the function calculates the yield.

See Also

- BONDCF - Cash flows for a bond paying regular periodic interest
- DIRTYPRICE - Dirty price of a bond
- DIRTYYIELD - Yield of a bond from the dirty price
- DIS - Price, discount rate, and/or yield of a discount security
- DISC - Discount rate
- DISFACTORS - Factors for the price calculation of a discount security
- IAM - Price and/or yield of a security paying interest at maturity
- IAMFACTORS - Factors for the price calculation of a security paying interest at maturity
- ODDFPRICE - Price of a bond with an odd first coupon
- ODDFYIELD - Yield of a bond with an odd first coupon
- ODDLPRICE - Price of a bond with an odd last coupon
- ODDLYIELD - Yield of a bond with an odd last coupon
- OFC - Calculate the price and/or yield of a bond with an odd first coupon using the ODDFPRICE equation
- OFCFACTORS - Returns the components of the ODDFPRICE equation
- OFL - Calculate the price and/or yield of a bond with an odd first and an odd last coupon using the OFLPRICE equation
- OFLFACTORS - Returns the components of the OFLPRICE equation
- OFLPRICE - Calculate the price of a security with an odd first and odd last period
- OFLYIELD - Calculate the yield of a security with an odd first and odd last period
- OLC - Calculate the price and/or yield of a bond with an odd last coupon using the ODDLPRICE equation
- OLCFACTORS - Returns the components of the ODDLPRICE equation
- PRICE - Price of a security paying regular periodic interest
- PRICEACT - Price of a bond where coupon amounts are based on number of days in the coupon period
- PRICEACTV - Cash flows and discount factors for a bond where coupon amounts are based on number of days in the coupon period
- PRICEDISC - Price of a discounted security
- PRICEFR - Price of a bond with forced redemptions
- PRICEMAT - Price of an interest-at-maturity security
- PRICESTEP - Price of a security with step-up rates
- RPIFACTORS - Factors for the calculation of the price of a bond that pays regular periodic interest
- TBILLEQ - Bond equivalent yield of a Treasury Bill
- TBILLPRICE - Price of a Treasury Bill
- TBILLYIELD - Yield of a Treasury Bill
- YIELD - Yield of a bond paying regular periodic interest
- YIELDACT - Yield of a bond where coupon amounts are based on number of days in the coupon period
- YIELDDISC - Yield on a discount security
- YIELDFR - Yield of a bond with forced redemptions
- YIELDMAT - Yield on an interest-at-maturity security
- YIELDSTEP - Yield of a security with step-up rates

