NSCOEF2

Updated: 31 Mar 2016

Use NSCOEF2 to calculate the Nelson Siegel coefficients for a zero coupon curve. Nelson and Siegel suggested calculating the yield curve at a point using this formula:

$$y_{\tau} = \beta_0 + \beta_1 \left[\frac{1 - \exp(-\tau/\lambda)}{\tau/\lambda} \right] + \beta_2 \left[\frac{1 - \exp(-\tau/\lambda)}{\tau/\lambda} - \exp(-\tau/\lambda) \right]$$

To find the coefficients, the program uses ordinary least squares to calculate the values of B_0 , B_1 , and B_2 for any value of λ and simply finds the value of λ which has the smallest residual sum of squares in the constraints defined by the input parameters.

Syntax

```
Public Shared Function NSCOEF2(
ByVal YieldCurve_RangeQuery As String,
ByVal NumSteps As Integer,
ByVal Tau_min As Double,
ByVal Tau_max As Double,
ByVal B0_min As Double,
ByVal B0_max As Double,
ByVal B1_min As Double,
ByVal B1_max As Double,
ByVal B2_min As Double,
ByVal B2_max As Double,)
```

Arguments

YieldCurve_RangeQuery

a T-SQL statement, as a string, that specifies the maturities (as measured in years) and their zero coupon rates to be used as in calculating the Nelson Siegel coefficients. *YieldCurve_RangeQuery* is an expression that returns a **String**, or of a type that can be implicitly converted to **{paramtype}**.

NumSteps

an integer value that identifies the number of calculations to be done between *Tau_min* and *Tau_max*. *NumSteps* is an expression that returns a **Integer**, or of a type that can be implicitly converted to **Integer**.

Tau_min

the lower end of the range of permissible values for tau. *Tau_min* is an expression that returns a **Double**, or of a type that can be implicitly converted to **Double**.

Tau_max

the upper end of the range of permissible values for tau. *Tau_max* is an expression that returns a **Double**, or of a type that can be implicitly converted to **Double**.

B0_min

the lower end of the range of permissible values for B₀. *BO_min* is an expression that returns a **Double**, or of a type that can be implicitly converted to **Double**.

B0_max

the upper end of the range of permissible values for B_0 . *BO_max* is an expression that returns a **Double**, or of a type that can be implicitly converted to **Double**.

B1_min

the lower end of the range of permissible values for B₁. *B1_min* is an expression that returns a **Double**, or of a type that can be implicitly converted to **Double**.

B1_max

the upper end of the range of permissible values for B_1 . $B1_max$ is an expression that returns a **Double**, or of a type that can be implicitly converted to **Double**.

B2_min

the lower end of the range of permissible values for B₂. *B2_min* is an expression that returns a **Double**, or of a type that can be implicitly converted to **Double**.

B2_max

the upper end of the range of permissible values for B_2 . *B2_max* is an expression that returns a **Double**, or of a type that can be implicitly converted to **Double**.

Return Type FinancialTypes.NSCOEF2_table

```
Class NSCOEF2_table
Inherits Data.DataTable
Property Item(RowIndex As Integer) As FinancialTypes.OutputRow_NSCOEF2
```

Class OutputRow_NSCOEF2 Public B0 As Double Public B1 As Double Public B2 As Double Public Tau As Double Public RMSE As Double End Class

Column	Description
B0	The first coefficient
B1	The second coefficient
B2	The third coefficient
Tau	Tau
RMSE	The residual sum of squares. SQUARE(SUM($y - \hat{y}$))

Remarks

- The function is insensitive to order; it does not matter what order the dates and rates are passed in.
- See NELSONSIEGEL to calculate the interpolated values using the Nelson Siegel coefficients.
- See NSCOEF for another way to calculate the Nelson Siegel coefficients.
- If *NumSteps* is NULL, *NumSteps* = 50.
- If Tau_min is NULL, Tau_min = 0.5
- If *Tau_max* is NULL, *Tau_max* = 9.5
- If *BO_min* is NULL, *BO_min* = -1
- If *BO_max* is NULL, *BO_max* = 1
- If *B1_min* is NULL, *B0_min* = -1
- If *B1_max* is NULL, *B1_max* = 1
- If *B2_min* is NULL, *B2_min* = -1
- If *B2_max* is NULL, *B2_max* = 1

See Also

- NELSONSIEGEL Zero coupon rate using Nelson Siegel formula
- NSCOEF Nelson Siegel coefficients for a zero coupon curve