AMORTRATE

Updated: 31 Mar 2016
Use the scalar valued function AMORTRATE to calculate the constant daily effective rate to be used in the amortization/accretion of bond (or loan) premium or discount.

The AMORTRATE value is used to calculate an adjustment to the daily interest accrual reflecting the appropriate amortization and is calculated in much the same way as the daily interest accrual. One way to think of this adjustment is as follows:

$$
\begin{aligned}
& A_{t}=\left(P_{t} * r_{\mathrm{a}}\right)-C_{t} \\
& P_{t+1}=P_{t}+A_{t}
\end{aligned}
$$

Where:
$A_{t} \quad$ is the amortization amount at time t.
$\mathrm{P}_{\mathrm{t}} \quad$ is the principal amount at time t.
$r_{a} \quad$ is the amortization rate.
$C_{t} \quad$ Is daily coupon amount at time t. Due to various day-count conventions, the daily coupon amount may vary over the life of a financial instrument.

Notice that while A and P (and potentially C) vary over the term of the financial instrument, r_{a} is constant.

Because r_{a} is an adjustment to the coupon interest, the adjustment should only be applied on days when coupon interest is calculated. For some bonds, this means that there is no interest on the $31^{\text {st }}$ of the month. For others, it might mean that interest is not accrued on Feb-29 or is only accrued on business days. Or, the last day of February might contain 2 or even 3 days of coupon interest. The AMORTRATE function makes the appropriate adjustment based in the day-count convention (also known as interest basis) supplied to the function.

To see a detailed amortization schedule using the AMORTRATE value, you can use the BONDAMORT table-valued function.

```
Syntax
Public Shared Function AMORTRATE(
    ByVal Settlement As Date,
    ByVal Maturity As Date,
    ByVal Rate As Double,
    ByVal FaceAmount As Double,
    ByVal CleanPrice As Double,
    ByVal Redemption As Double,
    ByVal Frequency As Double,
    ByVal Basis As String,
    ByVal IssueDate As Date,
```

```
ByVal FirstInterestDate As Date,
```

ByVal LastInterestDate As Date,
ByVal Holidays As String,)

Arguments

Settlement

the settlement date of the transaction. Settlement is an expression that returns a Date, or of a type that can be implicitly converted to Date.

Maturity

the maturity date for the financial instrument. Maturity is an expression that returns a Date, or of a type that can be implicitly converted to Date.

Rate

the coupon rate, as a decimal, for the financial instrument. Rate is an expression that returns a Double, or of a type that can be implicitly converted to Double.

FaceAmount

the face (or notional) amount of the financial instrument. FaceAmount is not necessarily the same as par value. For example, if you bought $\$ 1$ million on US Treasury Bonds, theFaceAmount would be $\$ 1$ million. FaceAmount is an expression that returns a Double, or of a type that can be implicitly converted to Double.

CleanPrice

the initial value of the financial instrument, exclusive of any accrued interest. CleanPrice should be expressed in relation to FaceAmount. CleanPrice is an expression that returns a Double, or of a type that can be implicitly converted to Double.

Redemption

the redemption value of the financial instrument expressed in relation to the FaceAmount. Redemption is an expression that returns a Double, or of a type that can be implicitly converted to Double.

Frequency

the number of coupon payments per year. For annual payments, Frequency $=1$; for semiannual, Frequency $=2$; for quarterly, Frequency $=4$; for monthly, Frequency $=12$. Frequency is an expression that returns a Double, or of a type that can be implicitly converted to Double.

Basis
Basis Day count basis

0 or omitted US (NASD) 30/360
1 Actual/Actual
2 Actual/360
3 Actual/365
$4 \quad$ European 30/360

5

30/360 ISDA
NL/ACT
NL/365
NL/360
A/364
US (NASD) 30/360 non-end-of-month
Actual/Actual non-end-of-month
Actual/360 non-end-of-month
Actual/365 non-end-of-month
European 30/360 non-end-of-month
30/360 ISDA non-end-of-month
NL/ACT non-end-of-month
NL/365 non-end-of-month
NL/360 non-end-of-month
A/364 non-end-of-month
BUS/252
Actual/ISDA
Actual/ISMA
Actual/365L
Actual/AFB
30E+360
BUS/252 non-end-of-month
Basis is an expression that returns a String, or of a type that can be implicitly converted to String.

IssueDate

the issue date of the security; the date from which the security starts accruing interest.
IssueDate is an expression that returns a Date, or of a type that can be implicitly converted to Date.

FirstInterestDate
the first coupon date of the security. The period from the issue date until the first coupon date defines the odd first interest period. All subsequent coupon dates are assumed to occur at regular periodic intervals as defined by Frequency in relation to theLastInterestDate (if entered) or Maturity. FirstInterestDate is an expression that returns a Date, or of a type that can be implicitly converted to \{paramtype\}.

LastInterestDate

the last coupon date of the security prior to maturity date, if the last coupon period is an odd period. The period from the last interest date date until the maturity date defines the odd last interest period. All previous coupon dates are assumed to occur at regular periodic intervals as defined by Frequency. LastInterestDate is an expression that returns a Date, or of a type that can be implicitly converted to \{paramtype\}.

Holidays
a comma separated string containing the holiday (non-business) dates to be used in the calculation of the number of business days. Holidays is an expression that returns a String, or of a type that can be implicitly converted to String.

Return Type

Double

Remarks

- Settlement cannot be NULL
- Maturity cannot be NULL
- Settlement must be less than Maturity
- FaceAmount, CleanPrice, and Redemption must all have the same sign.
- If Redemption is NULL, then Redemption = FaceAmount
- If Frequency is NULL, then Frequency = 2
- If Basis is NULL, then Basis = 0
- If FirstInterestDate is NOT NULL, then IssueDate cannot be NULL
- If FirstInterestDate is NOT NULL, then FirstInterestDate must be greater than IssueDate
- If LastInterestDate is NOT NULL, The LastInterestDate must be less than Maturity
- If LastInterestDate is NOT NULL and FirstInterestDate is NOT NULL, then FirstInterestDate must be less than LastInterestDate.

See Also

- AMORTSCHED - Generate amortization schedule of a loan
- Balloon - Schedule with periodic interest payments and principal repaid at maturity
- Bullet - Schedule with single interest and principal payment at maturity
- ConstantCashFlow - Schedule with equal periodic cash flows
- ConstantCashFlowFR - Schedule for a loan with a fixed maturity date and annuity-style payments
- ConstantPaymentAmount -Schedule with no maturity with fixed periodic payment amount
- ConstantPrincipal - Schedule with fixed maturity date where the periodic principal payment is calculated on a straight-line basis
- ConstantPrincipalAmount - Schedule with no fixed maturity with a fixed periodic principal payment
- ConstantPrincipalRate - schedule with no fixed maturity where a fixed percentage principal payment
- CONSTPRINAMORT - Schedule of a loan with a fixed principal repayment
- NPD - Next payment date of a loan
- NPNO - Next payment number of a loan
- PAYMENTPERIODS - Number of months until first payment date, start of grace period, end of grace period, and total number payments for a loan
- PERIODRATE - Adjust the nominal rate of a loan
- PPD - Previous payment date of a loan
- PPNO - Previous payment number of a loan
- UNEQUALLOANPAYMENTS - Schedule for a loan where interest and principal payment frequencies differ

